Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; 9(1): e0027321, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1341310

ABSTRACT

The SARS-CoV-2 B.1.1.7 variant has increased sharply in numbers worldwide and is reported to be more contagious than the nonvariant. Little is known regarding the detailed clinical features of B.1.1.7 variant infection. Data on 74 COVID-19 cases from two outbreaks in two districts of Beijing, China were extracted from a cloud database, including 41 cases from Shunyi District (Shunyi B.1.470 group) and 33 from Daxing (Daxing B.1.1.7 group) from December 25, 2020 to January 17, 2021. We conducted a comparison of the clinical characteristics. Seven clinical indicators of the Daxing B.1.1.7 group were significantly higher than those of the Shunyi group, including the proportion with fever over 38°C, the levels of C-reactive protein (CRP), serum amyloid A (SAA), creatine kinase (CK), d-dimer (DD), and CD4+ T lymphocytes (CD4+ T), and the proportion with ground-glass opacity (GGO) in the lung (P values of ≤0.05). After adjusting for age, B.1.1.7 variant infection was a risk factor for elevated CRP (P = 0·045), SAA (P = 0·011), CK (P = 0·034), and CD4+ T (P = 0.029) and for the presence of GGO (P = 0.005). The median threshold cycle (CT) value of reverse transcriptase quantitative PCR (RT-qPCR) tests of the N gene target in the Daxing B.1.1.7 group was significantly lower (P = 0.036) than that in the Shunyi B.1.470 group. Clinical features, including a more serious inflammatory response, pneumonia, and a possibly higher viral load, were detected in the cases infected with B.1.1.7 SARS-CoV-2. The B.1.1.7 variant may have increased pathogenicity. IMPORTANCE The SARS-CoV-2 B.1.1.7 variant, which was first identified in the United Kingdom, has increased sharply in numbers worldwide and was reported to be more contagious than the nonvariant. To our knowledge, no studies investigating the detailed clinical features of COVID-19 cases infected with the B.1.1.7 variant have been published. Local epidemics have rarely occurred in China, but occasionally, a small clustered outbreak triggered by an imported SARS-CoV-2 strain with only one chain of transmission could happen. From late 2020 to early 2021, two clustered COVID-19 outbreaks occurred in Beijing, one of which was caused by the B.1.1.7 variant. The COVID-19 patients from the two outbreaks received similar clinical tests, diagnoses, and treatments. We found that the B.1.1.7 variant infection could lead to a more serious inflammatory response, acute response process, more severe pneumonia, and probably higher viral loads. This therefore implies that the B.1.1.7 variant may have increased pathogenicity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , SARS-CoV-2/classification , SARS-CoV-2/genetics , Adult , CD4-Positive T-Lymphocytes , China/epidemiology , Cohort Studies , Female , Humans , Lung/virology , Male , Middle Aged , Prospective Studies , Risk Factors , Viral Load , Whole Genome Sequencing
2.
Front Med (Lausanne) ; 8: 629828, 2021.
Article in English | MEDLINE | ID: covidwho-1127988

ABSTRACT

We reported that the complete genome sequence of SARS-Coronavirus-2 (SARS-CoV-2) was obtained from a cerebrospinal fluid (CSF) sample by ultrahigh-depth sequencing. Fourteen days after onset, seizures, maxillofacial convulsions, intractable hiccups and a significant increase in intracranial pressure developed in an adult coronavirus disease 2019 patient. The complete genome sequence of SARS-CoV-2 obtained from the cerebrospinal fluid indicates that SARS-CoV-2 can invade the central nervous system. In future, along with nervous system assessment, the pathogen genome detection and other indicators are needed for studying possible nervous system infection of SARS-CoV-2.

3.
Open Forum Infect Dis ; 7(5): ofaa169, 2020 May.
Article in English | MEDLINE | ID: covidwho-623975

ABSTRACT

BACKGROUND: There is currently a lack of nonspecific laboratory indicators as a quantitative standard to distinguish between the 2019 coronavirus disease (COVID-19) and an influenza A or B virus infection. Thus, the aim of this study was to establish a nomogram to detect COVID-19. METHODS: A nomogram was established using data collected from 457 patients (181 with COVID-19 and 276 with influenza A or B infection) in China. The nomogram used age, lymphocyte percentage, and monocyte count to differentiate COVID-19 from influenza. RESULTS: Our nomogram predicted probabilities of COVID-19 with an area under the receiver operating characteristic curve of 0.913 (95% confidence interval [CI], 0.883-0.937), greater than that of the lymphocyte:monocyte ratio (0.849; 95% CI, 0.812-0.880; P = .0007), lymphocyte percentage (0.808; 95% CI, 0.768-0.843; P < .0001), monocyte count (0.780; 95% CI, 0.739-0.817; P < .0001), or age (0.656; 95% CI, 0.610-0.699; P < .0001). The predicted probability conformed to the real observation outcomes of COVID-19, according to the calibration curves. CONCLUSIONS: We found that age, lymphocyte percentage, and monocyte count are risk factors for the early-stage prediction of patients infected with the 2019 novel coronavirus. As such, our research provides a useful test for doctors to differentiate COVID-19 from influenza.

SELECTION OF CITATIONS
SEARCH DETAIL